The research leading to these results has received funding from the European Union’s European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007-2013, under Grant Agreement No. 323273 for the DOPAS project.
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Reference Design of CZ DGR 2011

- The basic fuel back end concept consists of the **direct disposal of spent fuel in steel based canisters in a crystalline host rock**
- Depth: 500 - 600 m
- Operation period **2065 – 2140**
Site Selection Programme for Final DGR Site 2015 - 2025

- Near surface geological survey of preselected sites (7) – now
- Evaluation of primary data from sites and selection of the most suitable sites on the basis of preliminary safety
- Evaluation and other socioeconomic, political and environmental criteria (2016)
- Geological survey of selected sites with deep boreholes (2018 – 2019)
- Evaluation of sites and selection of 2 candidate sites for Government decision (2019/2020)
- Detailed characterisation at 2 candidate sites (2020 – 2024)
- Evaluation of the candidate sites and selection of the final site (2025)
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Sites

- 7 sites
- Proposed exploration areas
- Located in the crystalline rocks 515 - 320 Ma
- Crystalline = granites and metamorphic rock

Advantages:
strength, homogeneous composition, low permeability, stable environment

Source: SÚRAO

DOPAS Training Workshop 16.9. 2015 Prague
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Rocks

Granite

Plutonic rock origin from depth 5-10 km

Main minerals: quartz, felds, mica, amphibole

More precisely: granite, granodiorite, syenite, durbachite

Granulite / migmatites

Metamorphic rocks HT-MP condition 20 km depth

Granulites: feldspar, garnet, quartz

Migmatites: quartz, felds, micas
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Sites

Čertovka

Granite, 515 Ma Tis pluton, reflected the Cambro-ordovician extension

Teplá-Barrandian Unit (west)

East part sediments of the Žihle basin (sandstones, arkose)

Proposed exploration area: 29 km²
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Sites

Březový potok
Granodiorite, 350 Ma, reflecting subduction processes
Central Bohemian plutonic complex
Moldanubian Unit
Proposed exploration area: 23 km²

Source: trugeo
Source: SÚRAO
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Sites

Magdaléna

Syenite, 340 Ma, mixing of the earth crust and mantle material

Central Bohemian plutonic complex

Moldanubian Unit

Proposed exploration area: 23.5 km²
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Čihadlo
- Granite, 328 Ma Klenov pluton
- Decompressional melting of deep seated rocks
- Central Moldanubian Plutonic Complex
- Moldanubian unit
- Proposed exploration area: 24 km²

Hrádek
- Granite, 330 Ma
- Decompressional melting of deep seated rocks
- Central Moldanubian Plutonic Complex
- Proposed exploration area: 25 km²
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Sites

Horka

Durbachite, 340 Ma Třebíč pluton,
Mixing of the earth crust and mantle material
Moldanubian Unit
Proposed exploration area: 28 km²
Geological Disposal of Spent Nuclear Fuel in the Czech Republic

Sites

Kravi Hora

Granulite/migmatite 340 Ma

High-grade rock, continental collision

Moldanubian Unit

Proposed exploration area: 18 km²
Exploration programme stage I

- Near surface geology
- Narrowing the numbers of potential localities

Aims:
- Geological map (3D model)
- Verification of faults and brittle structures
- Hydrogeological model
- Define possible block in level of repository
Exploration programme stage I

Geological mapping

- Synthesis of all exploration methods
- 3D visualization of geological pattern
- Visualization:
 - Rock types
 - Ductile and brittle structures
 - Geological pattern in the depth
Exploration programme stage I

Remote sensing
Satellite and radar image
3D topographical model
Defining the brittle fractures
Exploration programme stage I

Geophysics

Study of „fields“

Definition of: faults, rock types, geological boundaries

Fields:

Gravity
Regional structures, depth evolution

Electric
Local faults

Magnetic
Faults, rock types

Seismic
Geological boundaries, faults
Exploration programme stage I

Site selection

Criteria:

• Project
• Safety (geology)
• Environmental
• Socio-economic
Generic research for DGR

URF Bukov
- Crystalline rocks – gneisses, migmatites with sequences of fractures
- Depth – 600 m below surface
- Construction - 2013 – 2016
 - 1st research project parallel with construction – Pilot Rock Characterisation / Site Descriptive Model
- Operation until 2025 ...
- Research projects
 - Long-term properties of canister materials in reducing conditions
 - Rock matrix diffusion properties in crystalline rocks
 - T-H-M-C properties of the rock
Generic research for DGR

Bedřichov Water Supply Tunnel

Construction period:
β 1981-83

Tunnel profile:
β Circular 3.6m diameter

Building technology:
β drill and blast 1705 m,
β TBM 890 m

Tunnel depth:
β max. 140 m

Uncovered granite:
β total 1397 m
β TBM section 787 m
Demonstration research for DGR

Josef Gallery

• Operated by CTU
• Demonstrations projects
• Training activities
• Supported by ministries and SÚRAO
Thank you for your attention

Fig. 7. Example of how the surface facility for access to the geological repository might also look

vondrovic@surao.cz

www.surao.cz
Conditions for use of this training material

The training materials for the DOPAS Training Workshop 2015 have been produced partly with the European Commission’s financial support. The materials can be downloaded from the DOPAS WP7 webpage and used in general freely without a permission for non-commercial purposes providing the source of the material and Commission support is referred to. The figures and pictures in each presentation originate from the organisation that has produced the specific training material unless mentioned otherwise.

Some photos and materials in the presentations present prior knowledge (background information) of the consortium partners.

This information is marked with © and requires a permission for all uses from the copyright owner.

Non-commercial use means that if this training material is used e.g. in education, training, or consulting no fee may be collected from using this material.

For other uses, please contact the DOPAS project.
The research leading to these results has received funding from the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013, under Grant Agreement No. 323273 for the DOPAS project. Included images are for non-commercial use.