
DOPAS: Full-scale demonstration of the feasibility and performance of plugs and seals

> Matt White, Galson Sciences Limited Representing the DOPAS Consortium

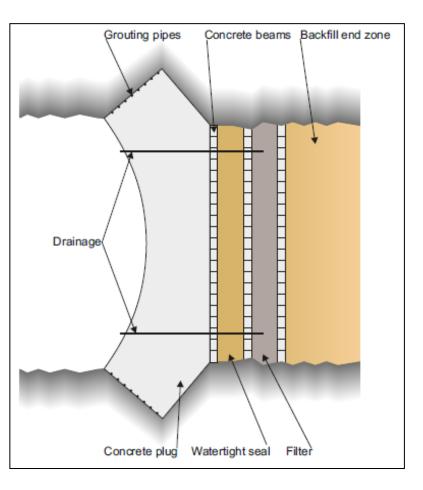
Repository Plugs and Seals

- Plugs and seals are components used to isolate and contain specific repository features
- Examples include:
 - Mechanical plugs, which may be used to provide an obstacle to human intrusion or to hold materials in place
 - Hydraulic plugs, which may be used to limit groundwater flow in specific locations
- Different plugs and seals will be emplaced in different locations in the repository

The DOPAS Project

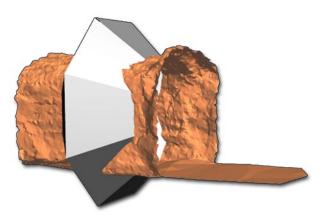
- Five experiment being designed, implemented and assessed across seven work packages
- Supported by materials development
- Three experiments in crystalline rocks:
 - DOMPLU (Äspö)
 - POPLU (ONKALO)
 - EPSP (Josef)
- One experiment related to clay:
 - FSS (St Dizier)
- A set of experiments and performance assessment studies related to salt:
 - ELSA (generic German concept)

	Experiment ANDRA & N	Experiment RAWRA, CT	Experiment SKB, POSIVA	Experiment POSIVA, SK		Experiment 5; DBETEC, GRS;
WP1 Project Management and Coordination (Posiva)	1: FSS 4GRA)	C N	nt 3:DOMPLU WA	ent 4: POPL SKB, BTECH	_	ant 5: ELSA, GRS, NRG
WP2 Definition of requirements and design basis of plugs and seals (SKB)	(BURE;FR)	EPSP (URC Jos	(Åspö	U, (ONIKAL Y		, (Ibd,DE)
WP3 Design and technical construction feasibility of plugs and seals (Andra)		Josef, CZ)	SE)	LO,FIJ		
WP4 Appraisal of plugs and seals system's function (NDA) $% WP4$						
WP5 Performance assessment of the plugs and seals systems (GRS)						
WP6 Integrative analysis of results (Posiva)						
WP7 Dissemination (Posiva)						

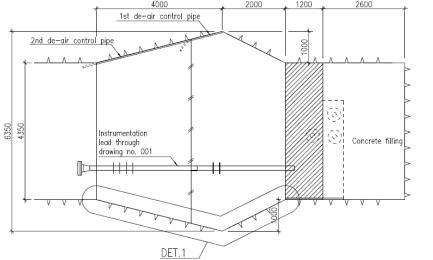

Presentation Objective

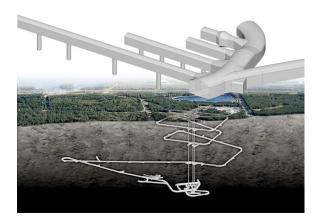
- Introduce conceptual designs of DOPAS plugs and seals, and describe their safety functions
 - Safety functions and conceptual design for each experiment
- To summarise how development of the design basis and assessment of compliance is supporting feasibility demonstration
- To present some initial results to illustrate how the technical feasibility of plugs and seals is being addressed in DOPAS

SKB: DOMPLU

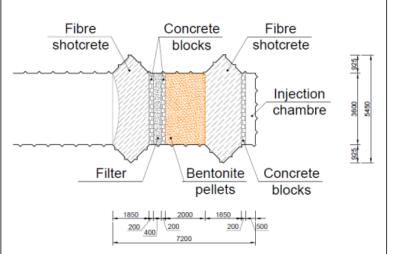

- Deposition tunnel plug test
- Function: confine the backfill in the tunnel, support backfill saturation and to provide a barrier against water flow / bentonite erosion (operations)
- Main components: concrete dome and watertight seal
- Other components support installation (e.g. manage pressure)

SKB: DOMPLU



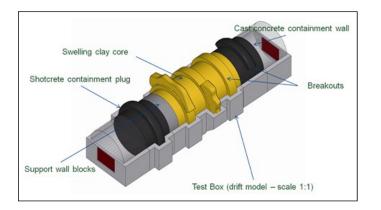


Posiva: POPLU



- POPLU is testing an alternative plug to DOMPLU
- Massive wedge-shaped reinforced concrete plug
- End zone for pressurisation
- Potential advantages: construction simplicity and fewer types of materials
- To be constructed in 2014

SURAO/CTU: EPSP



- Objective: materials and technology test
- Composite structure consisting of concrete domes and bentonite pellets
- Further development of Czech national expertise:
 - Use of steel fibre reinforced sprayed concrete
 - B75 bentonite
- Construction 2014

Andra: FSS

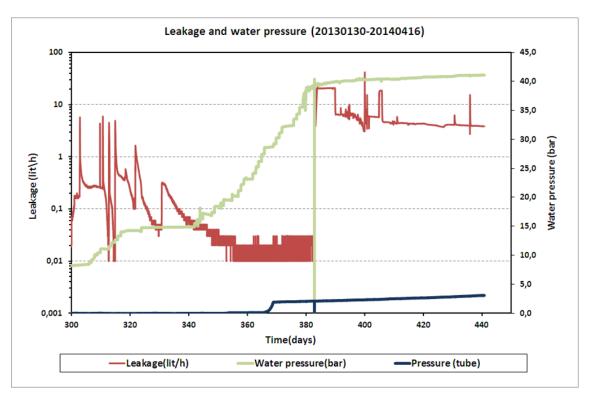
- AS
- Drift and ILW Vault seal test
- Function: limit water flow magnitude between underground and upper formations and reduce groundwater velocity
- Components: swelling clay core, K ≤ 1 x 10⁻⁹ m/s and low-pH concrete containment
- Issues: core emplacement in large volume with possible breakouts owing to lining removal
- Core emplacement June 2014

Germany: ELSA

- Programme of laboratory and *in situ* experiments:
 - Further develop the reference shaft seal for salt
 - Develop reference shaft seals for clay host rocks
- Shaft seal safety function for salt:
 - Provide a sufficiently low hydraulic conductivity to avoid brine paths into the repository and movement of radionuclides out of it
 - Seals provide containment until salt creep reduces the hydraulic conductivity of the host rock – salt creep is expected to seal the repository in 1,000 years
 - Functionality of shaft seals is designed to last until next expected ice age: 50,000 years
- Work in DOPAS includes thermo-hydro-mechanical and chemical-hydraulic experiments, and process-level and performance assessment modelling

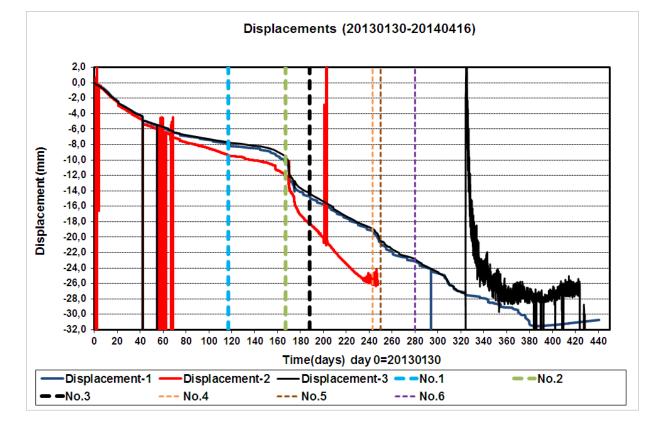
Development of the Design Basis

- Design basis consists of requirements on structures and conditions under which these requirements must be met
- Design basis is hierarchical
 - Safety functions represent the high-level requirements
 - For implementation, more detailed requirements are developed; in the DOPAS design basis these include requirements to use specific solutions
 - Low permeability > use swelling clay > swelling clay pressure > clay density
- For each experiment in DOPAS a comprehensive list of requirements and conditions has been developed
- Each list is grouped with respect to experiment-specific features: requirement timescales; components within each plug or seal structure; etc.
- Each requirement is analysed to check compliance of the experiment with the design basis
- The analysis allows iteration of the design basis, reasons for solutions to be presented and identification of construction procedures for implementation

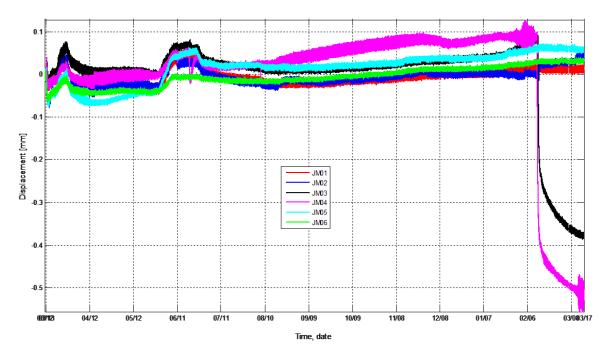


Examples of Learning I: DOMPLU: Performance Monitoring

- DOMPLU incorporates 100 sensors monitoring:
 - Water pressure [Bar]
 - Leakage rate [litre/min]
 - Temperature [°C]
 - Concrete strain [extension per unit length]
 - Concrete displacement relative to the rock [mm]
 - Relative Humidity [%]
 - Total pressure including swelling clay [Bar]
 - Filter displacement relative to the end wall [mm]


Examples of Learning I: DOMPLU: Pressurisation and Leakage

- The plug system has been watertight up to a water pressure of ~40 bar
- At pressures ≥~40 bar, leakage has occurred via the rock, sensor cables and the concrete/rock interface
- With water pressure of ~40 bar, the leakage rate is ~4 liters/hour (65 ml/min)
- No bentonite found in water


Examples of Learning I: DOMPLU: Filter Displacement

- All three sensors are showing inwards displacement
- The filter is being compressed by the bentonite seal
- In total there has been a movement of about 3 cm since the installation

Examples of Learning I: DOMPLU: Closure of Crest

 Joint meters in the top of the concrete dome(JM03 and JM04) show significant displacement in response to the increase in water pressure; these sensors show a negative displacement, i.e. closing of a gap

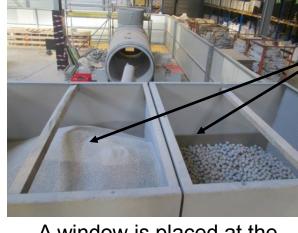
Examples of Learning I: DOMPLU: Design, Construction and Operation

- Monitoring data corresponds well to the expected performance
- The sealing function improves with time
- Flooding of the filter has been successful owing to active management of the pressure
- Despite the water leakages, no eroded bentonite has been found
- Rock requirements are shown to be important for plugs
- Sensor cables through plugs cannot be recommended for a future repository
- Installation procedures can be developed based on the experience of DOMPLU: emplacement of beams, filter and seal-pellets, and routines and design for dome formwork

Examples of Learning II: FSS Pellet Bentonite Mixture

- Function of seals is dependent on the hydraulic conductivity of the swelling clay core and its contact with the host rock
 - Target ≤1 x 10⁻⁹ m/s
- The geometry of the system, including possible breakouts leads to a conclusion that a pellet/powder mixture is the most suitable approach for swelling clay core emplacement
- 32-mm diameter pellets selected based on suitability of production method
- Laboratory testing used to identify best mixture:
 - 68% Pellets 32% Powder
 - $\rho_{d} = 1.60 \text{ g/cm}^{3}$

Examples of Learning II: FSS Clay Core Emplacement


- Emplacement based on dual auger system: augers can be controlled separately to adjust flow and material ratio
- Metric scale emplacement results
 - New conveying device to provide an adequate flux of pellets to be conveyed by the auger screw
 - ✓ Filling the bigger part (about 2/3) of the core with the 2 filling augers one above the other
 - ✓ Filling the top of the core (about 1/3) with the 2 filling augers side by side, thus creating a pressure build up likely to fill the recesses
- Density with new method: around 1.5 g/cm³
- New density sufficient for hydraulic conductivity of 1 x 10⁻⁹ m/s

FSS Swelling Clay Core Emplacement Augers Metric Testing

Two augers – one above the other

A window is placed at the bottom of the pipe

2 independent hoppers

Conclusions

- Demonstrations of full-scale plugs and seals are supporting the implementation of geological disposal
- Examination of the design basis is providing a platform for developing detailed designs and procedures for implementation
- Iterative cycle of design, testing and assessment is allowing engineering solutions to be identified for significant challenges and for realistic design basis requirements and conditions to be defined

Acknowledgements

POSIVA

- The research leading to these results has received funding from the European Union's European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement no 323273, the DOPAS Project
- More information can be found on the DOPAS website: <u>www.posiva.fi/dopas</u>
- DOPAS partners (see below) are thanked for their contributions to this presentation

Svensk Kärnbränslehantering Al

DOPAS

www.posiva.fi/dopas

